On sharply vertex transitive 2-factorizations of the complete graph
نویسندگان
چکیده
We introduce the concept of a 2-starter in a groupG of odd order.We prove that any 2-factorization of the complete graph admitting G as a sharply vertex transitive automorphism group is equivalent to a suitable 2-starter in G. Some classes of 2-starters are studied, with special attention given to those leading to solutions of some Oberwolfach or Hamilton–Waterloo problems. © 2005 Elsevier Inc. All rights reserved.
منابع مشابه
Sharply Transitive 1-Factorizations of Complete Multipartite Graphs
Given a finite group G of even order, which graphs Γ have a 1−factorization admitting G as automorphism group with a sharply transitive action on the vertex-set? Starting from this question, we prove some general results and develop an exhaustive analysis when Γ is a complete multipartite graph and G is cyclic.
متن کاملTwo-geodesic transitive graphs of prime power order
In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...
متن کاملPrimitive 2-factorizations of the complete graph
LetF be a 2-factorization of the complete graphKv admitting an automorphism groupG acting primitively on the set of vertices. IfF consists of Hamiltonian cycles, thenF is the unique, up to isomorphisms, 2-factorization ofKpn admitting an automorphism group which acts 2-transitively on the vertex-set, see [A. Bonisoli, M. Buratti, G. Mazzuoccolo, Doubly transitive 2-factorizations, J. Combin.Des...
متن کاملOn the eigenvalues of normal edge-transitive Cayley graphs
A graph $Gamma$ is said to be vertex-transitive or edge- transitive if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$, respectively. Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$. Then, $Gamma$ is said to be normal edge-transitive, if $N_{Aut(Gamma)}(G)$ acts transitively on edges. In this paper, the eigenvalues of normal edge-tra...
متن کاملPerfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 111 شماره
صفحات -
تاریخ انتشار 2005